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A quantum-mechanical theory for the magneto-option rotation in diamagnetic poly- 
atomic molecules is formulated using the timedependent second-order perturbation theory. 
The treatment is not restricted to molecules having non-degenerate excited wave functions. 
The contributions of the induced magnetic moment and the perturbed Boltzmann factor are 
included. The results are compared with some of the former bheories. 

Es wird eine quantenmechanische Theorie ffir die magneto-optisehe Drehung in dia- 
magnetischen mehratomigen Molekiilen unter Anwendung der zeitabh~ngigen StSrangs- 
theorie zweiter Ordnung formuliert. Die Behandlung ist nicht auf ~r mit nieht-ent- 
arteten angeregten Zust~nden beschrgnkt. Die Beitr~ge de~ induzierten magnetischen Mo- 
ments und des gestSrten Boltzmann-Faktors sind eingeschlo~en. Die Ergebnisse werden mit 
denen einiger frfiherer Theorien vergliehen. 

La th6orie des perturbations d6pendantes du temps, limit6e au second ordre, est utilis6e 
pour formu]er une thdorie quantique de la polarisation rotatoire magn6tique dans les mol6cules 
polyatomiques diamagn6tiques. L'6tude est 6tendue aux mo]@cules ayant des fonctions d'onde 
excit6es d6g6n6r@es. On tient compte de l'effet du moment magn6tique induit et du facteur de 
:Boltzmalm perturb6. Les r6sultats sent eompar6s ~ eeux de eertaines th6ories ant6rieures. 

1.  I n t r o d u c t i o n  

When  l inear ly  polar ized  r ad i a t i on  is passed  th rough  m a t t e r  p laced  in  a con- 
s t a n t  magne t i c  field, i t  is found  t h a t  the  p lane  of  po la r i za t ion  of the  emergen t  
r ad ia t ion  is ro ta t ed .  This phenomenon  is known  as the  magne to -op t i ca l  r o t a t i o n  
or the  F a r a d a y  effect. There  are two expe r imen ta l  procedures  in  measur ing  the  
magneto-optical rotation for a molecule. One method uses incident radiation in 
the immediate neighbourhood of an absorption line of the molecule, the other 
uses incident radiation well removed from resonance with any absorption line of 
the molecule. A theoretical aspect for the former phenomenon has been demon- 
strated by HAMEXA [4] using a theory of resonance fluorescence, turning his 
attention to the experimental work done by EBE~A~DT et al. 
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Experiments of the latter type show that  the angle of rotation ~0 is proportional 
to the external magnetic field strength ~S, i.e. 

= v I (~s, I) (~) 

where I is the optical path length through the medium, and ~ a unit vector in the 
direction of propagation of the radiation. The proportionality constant V is called 
the Verdet constant. In  this paper, an interpretation only for this phenomenon 
will be discussed. 

Quantum mechanical theories of magneto-optical rotation have been developed 
by K~o~m [8], ROSE~lr~LD [10], KI~OLL [7], K~AMEI~S [6], SERBEIr [11], and 
C A ~ o ~  [1]. Of these S~BE~ dealt witli the magneto-opticM rotation in mole- 
cules of all symmetry classes, using the first-order perturbation techniques succes- 
sively, one for the magnetic field (stationary) and the other for the radiation field 
(time-dependent). More recently, G R o ~ W ~ G ~  [3] treated the magnetic rotation 
along the same method of deriving natural optical rotation, based on a second- 
order time-dependent perturbation procedure. 

The purpose of the present paper will be to derive more general formulae for 
the magneto-optical rotation for the case of diamagnetic molecules of all symmetry 
classes, using the like manner of G ~ o ~ w ~ G ~ .  In these molecules, electronic 
wave functions for excited states are not always non-degenerate, so that  the 
matrix elements of the induced electric and magnetic moments can be complex. 
In this paper, the treatment is not restricted to molecules having non-degenerate 
excited wave functions, unlike the former treatments cited above. The tempera- 
ture-dependent paramagnetie terms, which are absent in G~o~N~wEa~'s formulae 
are obtained by  expanding the appropriate Boltzmann factor in the ground state 
of the molecule [5]. The results will be compared with the former theories in the 
last section. 

2. The Time-Dependent Perturbations 

Let us consider a molecule subjected to perturbations of a radiation and an 
external magnetic field. The molecule is assumed to be of diamagnetic so that  its 
ground state wave function is non-degenerate and the total spin angular mo- 
mentum in the ground state is zero. We restrict our treatment to the case that  the 
frequency of the incident radiation is well removed from resonance with any 
absorption lines, as mentioned before. 

Let  the position vector of the j-th electron in the molecule be rj, and the 
canonically conjugate linear momentum pj. When the over-all spin-multiplet 
width and the separations between the rotational levels of the ground state are 
small compared to leT/h, the spin can be regarded as completely uncoupled from 
the orbital angular momentum*. In  this ease, the total Hamiltonian for the 
molecule may  take the form : 

~ =  - ~ j  +eCj + u  (2) 

where e and m are the electronic charge and mass, respectively, U = U (~1, ~2 . . . . .  ) 
the internal potential, and ~j the scalar potentiM acting on electron ~. 9~j is the 
vector potential at the position of the ~-th electron and can be divided into two 

* For more detailed discussions on negligibleness of the spin effect, see ref. [11]. 
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parts; one due to the radiation field and the other due to the external magnetic 
field. When the incident radiation is a plane wave of frequency v propagating in 
the direction of the unit vector ~, the time-dependence of its vector potential aj 
at the position of the j-th electron may  be expressed as 

where c denotes the velocity of light in vacuo, n the refractive index of the medium, 
and ao ~ the complex amplitude. In  Eq. (3), the abbreviation 

ixp / = e2~S 

has been introduced for convenience. On the other side, the vector potential  due 
to the homogeneous external magnetic field is 

a~ = ~ [.~f, rj]. (4) 
The total  vector potential is then expressed as 

% = aj + ~. (5) 

In  expanding the square in Eq. (2), we must  bear in mind tha t  0i and 9s 
commute since we may  put  div 9s I = 0. Hence the first- and second-order per- 
turbat ion terms, which have to be added to the unperturbed Hamiltonian 5f'0, 
can be written in the forms 

~z(1) = _ (e/me) ~ ((aj + a~), ~j)),  (6) 
J 

~(~) = (~21m~) X (aj, a~). (7) 
J 

Here we have neglected the te rm (e/c) 2 ~t ~ as usual in most discussions of radiation, 
and reealIed that  (a~) 2 m a y  also be discarded because in calculating the induced 
moments  we are interested only in the terms linear in the external magnetic field. 
In  Eq. (6), the vector potential a I may  be expanded into a Taylor 's  series in terms 
of the value a and its derivatives V" ~ at the origin of a coordinate suitably fixed 
in the molecule. I f  we neglect higher terms representing quadrupole moment  and 
more, we obtain 

Jr = - -  (e /me)  ~ (~j, %) -- (g2, IV, a]o) - (~ ,  ~ f ) ,  (8) 

~(2)  = (el2 me 2) 0l ,  [%, .~s]) (9) 

where we have used the following definitions 

J 
~J~ = (e/2 me)  ~ [D, PJ] ( l l )  

i 
and 

a o = �89 {a ~ ixp (~t) + a ~ ixp ( -- at)}, (12) 

IV, fl]o -- �89 {[V, a]o ~ ixp (at) + [V, a] ~ ixp ( -  ~,t)} (i3) 

The time-dependent Sehr6dinger equation to be solved has now the form 

i h T ~  = ( w 0  + ~ (1 )  + ~f(~)) T .  (14) 

the dot being denote the t ime derivative. Following the usual procedure, one can 
expand ~Pn in terms of the unperturbed wave functions ~po, 

i *  
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! 

n ! @ n  

The set of the unperturbed wave functions satisfies the equation 

and has the form 

where VOn is the unperturbed stationary (time-independent) wave function and En 
denotes its eigenvMue. I f  we consider up to second-order time-dependent perturba- 
tion terms, the time derivative of the coefficient appeared in Eq. (i5) comes 
out to be 

i hcn'  = <n' I ~(1)  I n> ixp {v (n' n) t} -5 

+ <n' I 5/f(2) In> ixp {v (n' n) t} + (18) 

+ ~ c~,, <n' I ~(') I -"> ixp {~ (n' ~") t}. 
e"#~ 

Here we have introduced the frequencies 

v (n' n) = (En, -- Zn)/h (19) 

and the matrix elements of the perturbation operator ~/f(D and J~f(~) defined with 
respect to the unperturbed time-independent wave functions yon, 

In Eq. (t8), the first term determines the perturbed wave function [~n in the first 
order approximation and the remaiifing terms give the second order correction. 

Substituting Eqs. (8) and (9) into Eq. (18), and integrating with respect to 
time (the constant of integration is chosen so that  cn, = 0 at t = 0), one obtains 

I [i  ~ (n' n) . . . .  
cn, = ~ [ ~ t < ~ n  I ~  In>, a~) F+ (~' n) + (<n' l ~ In>, ao "t) F - ( ~ '  n)} + 

l 
+ K~ {(<n' I ~x I n>, Iv, ale ~) F+ (~' n) + (<~' Imt I ~>, In, a]~*) ~_ (n' n)} + 

t 
+ _ ~-1 (n' n) (<n' [ 9]% I n>, ~I) ixp {v (n' n) t} -- 

76 

~ {(<n' [ m I n>, [4, ~q) ~+ (n' n) + (<n' I ~ ] ~>, [~t, ~q) ~_ (n' n)}] + 

Z [i ~ (n" n) {[~ (n" ~) + ~]-~ (<~" i m I n>, ~o) ~+ (n' n) + 

+ [, (n" n) - ~]-~ (<~" l~ I~>, ~~ 9_ (~' n)} (<~' i ~ I ~">. ~) + (~i) 
+ ~ ~ (n' n") ~-~ (n" ~) {(<n' I ~ I n">, ~o) ~+ (n' n) + 

+ (<n' l m I n">, ~o ~ ~- (n' n)} (<n" [~ In>, @~) + 

+ KZ~ {[~ (n" ~) + ~]-~ (<~" [ ~x ] ~>, Iv, ~]g) ~+ (n' n) + 

+ [~ (n" n) - ~]-~ (<~" I m~ In>, [v,  ~]o ~ ~- (n' n)} (<n' I m~ I n">, ~ )  + 

+ ~ ~-~ (~" ~) {(<n' ] ~ I n">, IV, a]g) ~+ (n' n) + 

+ (<n' ] ~x I n">, [V, ~]g~) ~-  (n' n)} (<n' [ ~X I n>, ~0] 
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where 
F+ (n' n) = ixp {[v (n' n) + v] t} / [v (n' n) + u] 

and (22) 
F_ (n' n) = ixp {Iv (n' n) -- v] t} / [~ (n' n) -- v]. 

In deriving Eq. (2i), all terms containing square powers of the field strenghts of 
both the light wave and the external magnetic fields have been neglected. 

3. Expectation Values o~ the Induced Electric and Magnetic Moments 

Let the general moment operator be d/. The expectation value of ~/~ in the 
perturbed state n 

< ~ > ~  = f ~ ~ ~ n  dv (23) 

is easily calculated with Eqs. 05) and (2i), using the relations of Eqs. (t2) and (13) 
and their time derivatives 

~o = i ~ v (ao ~ ixp (vt) - ~o ~* ixp ( - ~t)} (24) 

Iv,  a]~ = i ~ ~ ( Iv ,  a]~ ixp (~t) - Iv,  ale ~ ixp ( - ~t )}  (2s) 

In this case, it  is convenient to express the vector potential in terms of the field 
strengths ~ and ~ : i.e. 

~0 = - c ~, Iv,  ~]~ = s) .  
Then one obtains 

rrh n' Cn 

+ 2 ~ - ~  (n' n) (<~' I ~ ]~>, ~ ) }  + 

+ (~/~ ~ )  ~ ~ ~ <" I~z t " >  [ (<"  t ~ I ~">, ~ )  {~-~ ~ (~' ~) ~ (~" ")  • 

x (<n" t s~ l ~>, iv (~" n) [~ (~' n) ~ (~" ~) + ~]  ~ + 2 ~ v (~" ~) [v (~' ~) + 

+ ~, (~r ~)] ~) + ~ (n' n) ~ (n" n) (<~" j ~ [~>, 2 = [~ (~'n) ~ (n"n) + ~ ]  0 + 

+ i [~ (~' n) + ~ (~" ~)] $)} + 

+ (4~" I ~ J ~,>, @s) {~-~ ~-~ (~,, ~) ~ (~,, n) (<~' t ~ l ~'>, 2 ~ ~ (~' ~") ~ + 

+ ~ (~' ~") ~ (~' ~) ~) + ~-~ (~r ~) ~ (~' ~) (<~' I ~t I~'>, ~ ~ '  ('~' ~) ~ + ~ $)}] + 

x ( { n  j -~ I n '>,  2 n't, ''~ r (n.' '~) ~ --  i'V ~ (n' n)  @) 4- v (n' n)  -r (n' n)  x 

x (<.., j ~ I . .% 2 ~,,, (..,' ..) ~ - ~ ) }  + (<.. j ~  l.,'>, ~ )  ?-h, -1  (..,.,)~ (..- ~) x 

x (@" I ~ [ ',,>, 2 s~,~ v (n" ,.,) @ + iv ~ (..7 s) @) + .~_1 (n.' n) "r (,n," ,..) x 

x (<.." t ~ J ~>, 2 ~ (~" ..) ~ + ,,:~)}]. (zT) 
Here we have used an abbreviated symbol 

(~' n) = ~ / Iv ~ (n' n) - ~,~] (28) 
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and ~ e  means that  we are to take the real part  of the terms after each summa- 
tion sign. 

To obtain the average moment per molecule at a given temperature, we have 
to multiply Bn if  Bn is the probability that  the molecule will be found in state n 
with energy En at this temperature, and sum over all possible n (n also includes 
both vibrational and rotational quantum numbers). The Boltzmann factor Bn 
under the influence of the external magnetic field is 

Bn = exp ( - En / kT) / _~ exp ( - E J  / kT) 
n ! 

= exp { -  E ~ + (<,~ ] ~ I n>, ~f)} / kT / 5 exp ( -  E~' / ~T). (29) 
3 ! 

Expanding the numerator and taking only the term linear in ~I, one obtains 

B~ = BX {t + (<n j ~  j~>, ~ f ) /~T}  (30) 
where 

B ~ = exp ( -  E~ / k T ) / Z  exp ( -  En, / kT) (31) 
n !  

and B ~ corresponds to the probability of state n without any perturbations. 
The expectation value of the general moment ]per molecule at a given temperature 
T then comes out to be 

<d/>nf = Z [<Jd>n + (I / kT) (<n [ ~ ] n}, ~I) is I ~' l n} + 

+ (~ I =I~ kT) ~ 7. {~-~ ~ (~' n) (<n' [ m I n>, r (~' ,~) ~ + 

+ 2 ~v 2 v (n' n) e) + (<n' [ ~ I n>, 2 7~v (n' n) @ + @) + (32) 

+ (~ I ~ ~m~) ~-~ ~ (~' n) (<~' ] ~ ] .>, v (n' n) [4, ~] - 

- 2 =~,~ Ee, s>,]} (<... ] ~ I n>, ,~z) <n I 4 .  [ n'>] 

where the first germ <~>n  has the same expression as Eq. (27). Thus the tem- 
perature-dependent paramagnetic terms are introduced. 

Since we are interested in obtaining the averaged components of moment J s  
in the directions of the fields ~, 5), and ~f, we have to average Eq. (32) over all 
classical orientations of the molecule with respect to the field directions, assuming 
all orientations to have an equal probability. This procedure is equivalent to 
taking a summation over all rotational quantum numbers in state functions, 
as NI~SS~ has shown before [9]. Let  N, ~, and G be vectors rigidly fixed to the 
freely rotating molecule, such as the electric and magnetic moment vectors. Then 
the average values of the vector quantities appeared in Eq. (32) take the form 

k (!~, (~) = �89 (9~, 93) e (33) 

(~, @~) (~, e) = -~ ~ ~ ~ [~z, ~] 

where ~ ~ ~ denotes the scalar triple product. 
The average electric and magnetic moments of the molecule in state n can be 

obtained from Eqs. (32) and (27) by substituting ~ and ~J~ for ~ ,  respectively, 
and by taking the average through the formulae given in Eq. (33). One may put  

<n I ~  In> and <n [ ~  In> equal to zero for diamagnetic molecules, when the 
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orientating effect of the externM field is neglected. Since an actual magnetic 
moment operator has the form 

(e / 2 c) ~ [rj, ~j] = ~ - (e 2 / 2 m c  2) ~ [rj, ~j] (34) 
] i 

the second term produces a perturbation and yields a time- and temperature- 
independent diamagnetic contribution. This procedure was shown by G ~ o ~ E -  
W~GE [3]. For the induced average electric moment per molecule, one finally 
obtains 

<~> .r  = A1 ~ + A2 ~ + & .~ + A4 [~, ~ ]  + ~ [~, ~ ]  + (35) 

+ A0 [,~, 0~] + A, C0, ~ ]  
where 

A ~ = ( 2 / 3 h ) ~ B ~  ~ u ( n ' n ) ~ ( n ' n ) j < n ! ~ l n ' } ] 2  (36) 

A ~ =  --(l/3zsh) 5B~ Ym 5 T ( n ' n ) ( < n [ ~ l n ' } , { n ' I ~ t l n > )  (37) 
n n p ~4~t 

A 3 = ( 2 / 3 h ) ~ B ~  ~e  ~ ~ ( n ' n ) ~ ( n ' n ) ( < n j ~ R ] n ' } , < n ' [ ~ I n } )  (38) 

+ <,~ I ~ [ ~> <~ l ~ I ~'> <~' [ ~ l ~> - (~ / ~T) ~-~ ~ (~' n) ~ (~' ~) x (39) 

A~ -- - (~/3 ~)  5 B ~ ~ 5 y~ [{~ (~' n) v (~" n) - ~} ~ (~' ~) ~ (~" ~) x 

A~ = ( i /6 sh ~') 7 4 .On Z ~ [~,-1 (,.,, ~,) {~, (~,..,) v (~.,,,,,) + ~ }  .-r (~' ~) "r (~" ~',,) x 

x <... J~ J~'> <,.' I ~ I ~"> <.." I ~  I~> + (4~) 

+ ~._1 (... ~)~ (,.. ~.) <,. I~  I,.'> <,.' J ~ I#'> <~" l~x I,.> - 

A~ = - (~./3 ~,2) ~ B ~ ~e ~ ~ [',,-" (~," ~) ~,-1 (~,, ~,,) ~,~ {~ (.,.,,, .,) _ "r (,,," ~)} x 

• <~/~  [ ~.'> <,.' 1 ~ I~"> <~" l ~ J ~> - (42) 

Kere it should be noted that since one ha~ to use complex wave functions (see 
m~roduction), (<n I ~  I,~'>, <n' Ig~ In>) = J<,~ I ~  i~'> [" is real hut the other 
vector quantities including the scalar triple products can be complex. We have 
replaced the ~e  symbol to J m  symbol in Eqs. (37), (39), and (41), according to, 
for example, 
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~ Z ~ ( < n l ~ l n ' > o < n ' l ~ l n > ) = - ~ m  Z ( < n l ~ [ n ' > , < n ' l ~ l n > ) ,  

The first eoefficien~ A 1 of Eq. (35) which form is shown in Eq. (36) corresponds 
r the polarizability of the molecule. 

In the same way, one can obtain the expression for the induced average 
magnetic momen~ per molecule : 

<~>.~ = ~ s) + B~ ~ + ~ ~ + B, [~, SJ] + Bo [~, ~q + 
+ ~ [~, ~ ]  + B~ [~, ~q + (Z~ + Z~) ~e (43) 

where 

B1 = (2/3 h) Z B~ Z ~ (n' n) ~ (~' n) [ (n ] ~ In'> ]2 (44) 
n n t ~ n  

U s = - (i/3 zh) ~ B~ J m  Z v-2 v~ (n' n) v (n' n) ((n [ ~ ] n'), (n '  [ ~ [ n)) (45) 
n r C n  

B~ = (:/3 h) Z ~ ~ ~: ~ (~' n) ~ (n' n) (<n I ~ [ n'>, <n' [ ~ l '~>) (46) 
n n v ys  

B 4=(1/67~h ~)SB~ J m  5 5 [~-l (n" n) (2 v ~ -  

- (hlkT) ~ (n' n) <n I ~  In> <~ I ~ In'> On' I ~  I n>] (47) 
B~ = - (1/3 h~) Z ~ ~ Z y~ [{~ (n' ~) ~ (~" ~) + ~} ~ (n' n) ~ (n" n) • 

n n ! ~ n  n H ~ n  

x (n [ ~ In'> <n' I ~ In"> <"'  [ ~ In> -- (hlkT) ~ (n' n) ~: (n' n) x 

x <n j ~ In> <n I ~  j n'> <n' ) ~ I n>] (4s) 

Bo = (~/6 ~ ' )  5 ~ J ~  Z 5 [~-~ (n" n') {~ (n' ,,) - ~ (~" n)} <n I ~ In'> • 

• <n, I ~ I n"> <n" I ~ I n> - ~-~ ~,-~ (n" n),,~ (n' n) ~ (n' n) {<n I ~ I n'> x 
x <n' I ~ I n"> <n" ! ~ I n> + <n I ~ I n'> <n' I ~ I n"> <n" I ~ I n > } -  
- ~-~ ~ (n' n) ~ (n' n) {(n I ~ I n> (n I ~ I n'> (n' I ~ ] n> + (49) 
+ <n I ~a I n> <n I ~ I n'> <n' I ~ I n>} - 

/3'7 = -- (1/3 h ~) Z B~ ,~e Z Z [{~'~ + v (n' n) v (n" n)} z (u' n) "r (n" n) x 
g g t  ~ g  g l t ~ g  

• <n I ~ I n'> <n' t ~ I n"> <~" t ~ I n > -  ~-~ (n" n)~ (n' ~)~ (~' n ) •  
x <n i ~ I n'> <n' l ~ l n"> <n" I ~ I ~>,,- (n/~T) ~ (n' ~) ~ (~' n) • (50) 
• <n [ ~ In> <n I ~ In'> <~' I ~ ln>] 

z~ = (~/3 ~) Z -~ Z ~ (n' n) l <n l ~ l ~'> 1~ (~)  

z~ - (~/~ ~ )  Z B~ Z (~ I ~ In> �9 (~)  
n 

Here B~ is the magnetic susceptibility, and Zp and Za are the time- and tempera- 
ture-dependent paramagnetic and diamagnetic susceptibilities, respectively. 

4. Magneto-0ptical Rotation 
To complete the discussion of the relation between r~diation of the plane of 

polarization and the field strengths, we consider an isotropie medium containing 
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N molecules per unit volume. When all molecules in the medium are assumed to 
be of the same ldnd and in the same state, the summation over n in the foregoing 
equations needs not be taken, the value of B~ being put  to be equal to unity in 
the case of diamagnetic molecules. For  gases and vapours, we may  assume tha t  
the effictive field acting on the molecule is set to be equal to the external field. 
The electric induction ~ and magnetic induction ~ in the medium may  therefore 
be written as 

= ~ + 4 ~z N <91}nT, (53) 

2 = @ + 4 ~z N <~l~>nm. 

Substituting Eqs. (35) and (43) into Eq. (53), and discarding time-independent 
terms, one obtains 

where 
oq = i -1- 47tN A~ 

~ = 4 ~N (2 7~ 

~ = 4 z N  (2 

Here it is noted tha t  ~1 is 
the medium. 

iv A~ + A~), 

iv A,  + A~), 

the dielectric 

/3~ = i + 4 :~N/71 

#3 = 4 ~ N  (2 ~ i~ B~ + B~) (55)  

~7~ = 4 ~N (2 ~ i~ B~ + B~). 

constant and/7 a is the permeabili ty of 

Substitution of Eq. (54) into Maxwell's equations 

n [7, e ]  = ~ ,  ~ [7, 5~] = - ~ (56)  

which are derived from his curl equations for the specified plane waves, and elimi- 
nation of <~ after neglecting higher powers of small quantities a~ and fli (i -- 2, 3.4) 
yield 

- ~ [~, [7, ~]] - ~1  f l l  e + {~ (~  - ~ )  + ~ (~ /~)  (~, ,~s)} [7, e l  - (57)  

- ~ #~ [~, ~s] - ~ ( ~  - fl~) [~, [~, .~s]] = 0 .  

The vector equation of this kind can be written as a system of homogeneous linear 
equations in Ezo Ey, and Ez which has non-trivial solutions only for specific values 
of the refractive index n. When directions of propagations of the radiation ~ and 
of the external magnetic field .~f are both taken to be z-axis, the determinantM 
equation from which the eigenvalues of n have to be determined is 

(ss) 
where Hf  denotes the magnitude of the external magnetic field along the z-axis. 
In  order to obtain approximate eigenvMues of n, let us again retain only first 
powers of the small quantities cr and/3i (i = 2, 3, 4). The result is 

~ ,  ~ = ( ~ / 3 ~ ) ' ~  + ~ ( ~  - ~ )  H S  ~ �89 i ( ~  - / 7 3 )  _+ (59) 

- �89 i (~  tT~ + ~ ~ )  (~1 #1) -~/* SS~ 
where n r  and n~ are the refractive indices for right and left circularly polarized 
waves, respectively, mr taking the upper sign and nz the lower. 
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Hence the rotation of the plane of polarization per unit path length is given by 

= (=~,/c) (n~ - nr) = (i :~,/c) {as -- ~ -- (~3 ~i + ~ ~,) (~, ~I) -'I~ H f} 

= (s ~3 N~2/c) {Bs - As + (A4 ~ + B4 ~ )  ( ~  ~0-1/~ H~}. (60) 

Since A s and B 2 are non-vanishing only for optically active molecules, the Verdet 
constant for ordinary (optically inactive) molecules can be expressed as 

V = (8 ~3 N~2tc) (A4 + Bd) (6~) 

where ~i and fll have been set equal to unity in accordance with our approximation 
taken about the effective field. In the absence of the external magnetic field, 
Eq. (6~) leads to the formula for the rotation of the plane of polarization in 
optically active molecules: 

~' = (8 ~8 .y~S/c) (B s _ As  ) . (62) 

Substitution of Eqs. (37) and (45) into Eq. (62), after rewriting Eq. (45) as 

~ ~ ~-s ~2 (~, ~) ~ (~, ~) (<~ I ~ I ~'>, <~' ] ~ I ~>) 
7b t ~ 

+ ~ ~ (~' ~) (<~ ] ~ ] -% <~ ' i~  l~>) 

gives 

~' = (t6 ~s Nv2/3 hc) E B n g  ~: (n' n) t im  (<n) ~ n'>, <n' I ~ In>) (63) 

which is the well known formula for the natural optical rotation [2]. 
Rewriting the second and fourth terms of Eq. (39) and the first term of Eq. (47), 

and substituting them into Eq. (6~), one obtains the final formula for the Verdet 
constant. 

v = (~ ~2 ~ / 3  ~2 c) ~ ~o ~ ~ [ _  2 ~ (~' ~) ~ (~' ~) <~' i ~ [ ~'> • 

- 2 5 ~-~ (~" ~) ~ (~' ~) <~ I ~ I~'> <~' I ~ 1 ~"> <~" I ~ [ ~> + (64) 

+ ~ (v-~ (~" ~') {~ (~' ~) - ~ (~" ~)} - 
qg' r  

The first term here is the diamagnetic term and is the contribution of the Zeeman 
effect. As will be seen in a forthcoming paper, this term reduces to the so-called 
,,normal" Verdet constant 
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V A = (4 ~e Nv~/3 h m~ ~) ~ B ~ ~ v (n' n) ~2 (u' n) t (n  [ ~ I n ')  ]~ (65) 
n t # 'o ,  

for linear molecules. The last terms of Eq. (64) are the temperature-dependent  
paramagnetie terms and are due to the altered distribution of molecules in the 
ground state caused by  the external magnetic field. All other paramagnetic terms 
arise from the perturbation of the amplitude elements of the electric moment  and 
the magnetic moment  by  the external magnetic field, and have the same frequency 
dependence as the temperature-dependent paramagnetie terms. In  particular, 
terms which are proportional to the difference quotient v -1 (n" n') {'c (n'n) - ~: (n"n)} 
can be expanded in powers of v (n" n') T (n' n) when tlfis quanti ty is small; i.e. 

~-~ (~" ~') (~ (~' ~) - ~ (~" ~)} 

= 2 v (~' ~) ~2 (~, ~) { 1  - 2 ~ (~' ~) ~ (~" ~') ~ (~' ~) + . . . .  }. ( 6 6 )  

When terms after the first are neglected, these paramagnetie terms (the third and 
the fifth terms in Eq. (64)) can be combined together with the first term ofEq.  (6~), 
which is diamagnetic. In  tha t  case, the Verdet constant can be written in the form 

V = v ~ ~ {~ (n' n) A (n' r~) + ~ (n' n) B (n' n) + T -~ ~ (n' ~) C (n' n)}. (67) 

Eq. (67) agrees with the formula given by S ~ R ~  [11] except that  the scalar 
triple products gJ~ gJ~ ~ were absent in his formula, since he did not take into 
consideration the contribution of the induced magnetic moment.  I t  also can be 
easily shown tha t  the temperature-independent terms in Eq. (64) agree with 
Oroenewege's formula. 

The formula given in Eq. (64) is very convenient for actual computations of 
the Verdet constant of diamagnetic molecules. This will be seen in a forthcoming 
paper. 

I should like to thank Professor P. O. LSwDIx for valuable discussions. This paper is 
dedicated to Professor M~s~o KoT~NI on his sexagenary birthday. 
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