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A quantum-mechanical theory for the magneto-optica. rotation in diamagnetic poly-
atomic molecules is formulated using the timedependent second-order perturbation theory.
The treatment is not restricted to molecules having non-degenerate excited wave functions.
The contributions of the induced magnetic moment and the perturbed Boltzmann factor are
included. The results are compared with some of the former theories.

Es wird eine quantenmechanische Theorie fiir die magneto-optische Drehung in dia-
magnetischen mehratomigen Molekiilen unter Anwendung der zeitabhingigen Stérungs-
theorie zweiter Ordnung formuliert. Die Behandlung ist nicht auf Molekiile mit nicht-ent-
arteten angeregten Zustdinden beschrinkt. Die Beitrige des induzierten magnetischen Mo-
ments und des gestérten Boltzmann-Faktors sind eingeschlossen. Die Ergebnisse werden mit
denen einiger fritherer Theorien verglichen.

La théorie des perturbations dépendantes du temps, limitée au second ordre, est utilisée
pour formuler une théorie quantique de la polarisation rotatoire magnétique dans les molécules
polyatomigues diamagnétiques. L’étude est étendue aux molécules ayant des fonctions d’onde
excitées dégénérées. On tient compte de I'effet du moment magnétique induit et du facteur de
Boltzmann perturbé. Les résultats sont comparés & ceux de certaines théories antérieures.

1. Introduction

When linearly polarized radiation is passed through matter placed in a con-
stant magnetic field, it is found that the plane of polarization of the emergent
radiation is rotated. This phenomenon is known as the magneto-optical rotation
or the Faraday effect. There are two experimental procedures in measuring the
magneto-optical rotation for a molecule. One method uses incident radiation in
the immediate neighbourhood of an absorption line of the molecule, the other
uses incident radiation well removed from resonance with any absorption line of
the molecule. A theoretical aspect for the former phenomenon has been demon-
strated by Hamexa [4] using a theory of resonance fluorescence, turning his
attention to the experimental work done by EBERHARDT et al.
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Experiments of the latter type show that the angle of rotation p is proportional
to the external magnetic field strength $7, i.e.

p=VIE.,H (1)
where [ is the optical path length through the medium, and ¥ a unit vector in the
direction of propagation of the radiation. The proportionality constant V is called
the Verdet constant. In this paper, an interpretation only for this phenomenon
will be discussed.

Quantum mechanical theories of magneto-optical rotation have been developed
by Krowig [8], RosexreLD [10], KrorL [7], KraAMERS [6], SERBER [I1], and
Carrorx, [7]. Of these SerBER dealt with the magneto-optical rotation in mole-
cules of all symmetry classes, using the first-order perturbation techniques succes-
sively, one for the magnetic field (stationary) and the other for the radiation field
(time-dependent). More recently, GROENEWEGE [3] treated the magnetic rotation
along the same method of deriving natural optical rotation, based on a second-
order time-dependent perturbation procedure.

The purpose of the present paper will be to derive more general formulae for
the magneto-optical rotation for the case of diamagnetic molecules of all symmetry
classes, using the like manner of GROENEWEGE. In these molecules, electronic
wave functions for excited states are not always non-degenerate, so that the
matrix elements of the induced electric and magnetic moments can be complex.
In this paper, the treatinent is not restricted to molecules having non-degenerate
excited wave functions, unlike the former treatments cited above. The tempera-
ture-dependent paramagnetic terms, which are absent in GROENEWEGE’s formulae
are cbtained by expanding the appropriate Boltzmann factor in the ground state
of the molecule [5]. The results will be compared with the former theories in the
last section.

2. The Time-Dependent Perturbations

Let us consider a molecule subjected to perturbations of a radiation and an
external magnetic field. The molecule is assumed to be of diamagnetic so that its
ground state wave function is non-degenerate and the total spin angular mo-
mentum in the ground state is zero. We restrict our treatment to the case that the
frequency of the incident radiation is well removed from resonance with any
absorption lines, as mentioned before.

Let the position vector of the j-th electron in the molecule be t;, and the
canonically conjugate linear momentum p;. When the over-all spin-multiplet
width and the separations between the rotational levels of the ground state are
small compared to £T/h, the spin can be regarded as completely uncoupled from
the orbital angular momentum*. In this case, the total Hamiltonian for the
molecule may take the form:

%272[2%1—(131—%91;)2-%6@]4—{] @)

where e and m are the electronic charge and mass, respectively, U = U (tq, tg -...)
the internal potential, and ¢; the scalar potential acting on electron j. ¥; is the
vector potential at the position of the j-th electron and can be divided into two

* For more detailed discussions on negligibleness of the spin effect, see ref. [11].
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parts; one due to the radiation field and the other due to the external magnetic
field. When the incident radiation is a plane wave of frequency v propagating in
the direction of the unit vector f, the time-dependence of its vector potential a;
at the position of the j-th electron may be expressed as

0 =3 {ag ixp [v <t — % (r, f))] -+ complex conjugate} (3)
where ¢ denotes the velocity of light in vacuo, » the refractive index of the medium,
and o the complex amplitude. In Fq. (3), the abbreviation

ixp f = ef
has been introduced for convenience. On the other side, the vector potential due
to the homogeneous external magnetic field is

o) =3 [, 1] (4)
The total vector potential is then expressed as
Wi = a5+ af . (5)

In expanding the square in Eq. (2), we must bear in mind that p; and U
commute since we may put div ; = 0. Hence the first- and second-order per-
turbation terms, which have to be added to the unperturbed Hamiltonian 47,
can be written in the forms

HD = — (efme) D ((a; + Cl;'), ps)) (6)

i
H® = (&jmc?) > (az, a}) . (7)

i
Here we have neglected the term (e/c)? a? as usual in most discussions of radiation,
and recalled that (a§f-)2 may also be discarded because in calculating the induced
moments we are interested only in the terms linear in the external magnetic field.
In Eq. (8), the vector potential a; may be expanded into a Taylor’s series in terms
of the value a and its derivatives v/ -a at the origin of a coordinate suitably fixed
in the molecule. If we neglect higher terms representing quadrupole moment and
more, we obtain

HD = — (efme) 3, (v, a) — (W, [V, al) — (I, H7) , 8)
H® = (ef2 mc?) (%;%: lag, §7]) 9)

where we have used the following definitions
R=e Z 1 (10)

i
MW = (2 me) 2, (1, py] (11)
and ’
ao = 3 {ag ixp () + aff ixp (— )}, (12)
[v, alo =% {[V, alj ixp () + [v, ol ixp (— »)} (13)
The time-dependent Schrodinger equation to be solved has now the form

PR, = (g + AV L HO)E, (14)

the dot being denote the time derivative. Following the usual procedure, one can
expand ¥, in terms of the unperturbed wave functions ¥,

4*
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Y=Y+ > c, () P . (15)
n! #n
The set of the unperturbed wave functions satisfies the equation
FEY = P (16)
and has the form
¥y = yuexp (— i By t]h) mn

where 3, is the unperturbed stationary (timé-independent) wave function and E,
denotes its eigenvalue. If we consider up to second-order time-dependent perturba-
tion terms, the time derivative of the coefficient appeared in Eq. (15) comes

out to be .
Phey =<' | H#® | nyixp {» (n' n)t} +

+ <n' | A | n)yixp {p (0’ n) 8} + (18)
+ > e ln’ | D [0y ixp{y (v’ ") ¢} .
nl#En

Here we have introduced the frequencies
v(n'n) = (B — Hyn) |k (19)
and the matrix elements of the perturbation operator # 1 and #® defined with
respect to the unperturbed time-independent wave functions 95,
' | HO [m) = [ypF HO ypdy. (20)

In Eq. (18), the first term determines the perturbed wave function ¥y in the first
order approximation and the remaining terms give the second order correction.

Substituting Eqgs. (8) and (9) into Eq. (18), and integrating with respect to
time (the constant of integration is chosen so that ¢4, = 0 at £ = 0), one obtains

:51%[ W) Lt | R, 09) o (a” m) + (o' | % | 0, a@1) P (' )}

+ % {(' [ W | m, [v, al)) Fi (0 ) + ({n” [ D | ), [A, algh) P (" n)} +

+ in v (' n) (Kn' | M| n), DY) ixp {» (n' n) £} —

e

{0’ | R |0, [05, D] F 1 (0" m) + (<0 | R | m), [0, $71) F (w' m)}] +

4mc?
-+ Ft;h? Wén Gy (n" ) {ly (n" n) +v]2 Kn" | R | n), af) F (v’ n) +
+ [ (0" n) —v] 7 Kn" | R | n), ) F_ (0 n)} Kn' | M| 0" §) + (21)

+ v (0 n")v L (" n) {(n' | R 2", ad) Fy (0’ n) +
+ (' | R | 0", aff) F_ (n' n)} (0" | M| 0D, §7) +

+ 5 Al (0" ) + 9] (07 | D | ), [y, ) s (' m) +

+ [ m) =91 (" | M|, [, o) B (' )} (' | M| 0", §7) +
+ o vt (0 m) {0 | |, [V, o)) e (0 m) +

+ (<’ | D[ w7, [y, alfh) P (0 m)} (o | 3R | ), §1)]
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where
Fo( n)y=1ixp{[» (n' n) + 1} [ v (n' ) + 9]

and (22)
F_(n' n)=ixp{ly (' n) =21t} /[y (' n) —»].

In deriving Eq. (21), all terms containing square powers of the field strenghts of
both the light wave and the external magnetic fields have been neglected.

3. Expectation Values of the Induced Electric and Magnetic Moments

Let the general moment operator be .#. The expectation value of . in the
perturbed state n

is easily calculated with Eqs. (15) and (21), using the relations of Egs. (12) and (13)
and their time derivatives

o = ¢ 7wy {al ixp (vf) — ot ixp (— #t)} (24)
v, ald = i v {{y, al} ixp (vt) — [y, alf ixp (— »t)} . (25)

In this case, it is convenient to express the vector potential in terms of the field
strengths € and $: ie.

4 7 12 ao.——c@, v, al=9 (26)
o= —cC[v,al=9%.
Then one obtains

Cllyn = n | M |my+ 2B 3 Cn | |05 =2 (o' m) (ol | ],

2%y (0’ m) G + 2 (0 m) §) + 7 (' m) (0 | M| nd, 2709 (' m)  + isi)) —
— (efd ame) v=27 (' n) (<n” [ R {0, v (' n) G, 91— 202 [, §7]) +
+ 27 (0 ) (0 | M| n), §)} -+
+ Uk Re T > nl a7y [(Kn' || 0", §) {21 (0’ n) T (0" n) x

n #En n'#En
X ({n" | R | n), iv (0" n) [» (0’ n)v (0" n) + v?] 5 + 22y (0" n) [v(n n)+
+v (0" )] €) + v (m n)T (" n) ((n | M| n), 2xy (0 n)v (0" n) ++2] 9 +
il (0 m) o (0" )] )} +
+ (" [ My, ) 2ot (0" n) T (0 n) (<n' | M| 2", 20002 » (0 2"} € 4
4 (0" 0"y v (0 n) €) + vt (10" 0) 7 (0 m) ({0 || 2", 270 (n' 0) D + i.Si))}] +
+ (1 2xhRe 3 D | M0 [(n" | W] n), HT) {2yt (0" n) T (0 n) x
w #EnnlEn
X (Kn | R |0, 2aty (0’ n) € — 02 (v’ n) @) +v(n n) T 9 x
X (Cn [ | 0"y, 20w (0 m) § — i)} + ((n | |07, §7) {291 (0’ n) 7 (n" 1) X
X (0" | R n), 20ty (0" n) € + ? (0" n) @) + v (n nyT (0" n) X
X ({n" | M|y, 27 (07 m) § + i)} - (27)
Here we have used an abbreviated symbol

T (0w n)=1/p%n n) — 2] (28)
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and Ze means that we are to take the real part of the terms after each summa-
tion sign.

To obtain the average moment per molecule at a given temperature, we have
to multiply By, if B, is the probability that the molecule will be found in state n
with energy H, at this temperature, and sum over all possible # (n also includes
both vibrational and rotational quantum numbers). The Boltzmann factor 5,
under the influence of the external magnetic field is

B =exp(— By [ kT)| S exp (— By | kT)
— oxp {— ES -+ ((n | MR |uy, 9N} [ KT | 3 exp (— B | BT) . (29)

Expanding the numerator and taking only the term linear in $7, one obtains

By = By {1+ ((n || n), §7) | KT} (30)
where
Bl =exp(— B} | kT)| > exp (— Eu | kT) (31)

and Bl corresponds to the probability of state » without any perturbations.
The expectation value of the general moment per molecule at a given temperature
T then comes out to be

(Myng = 2 [{lon + (L] ET) ((n [T | 0>, 1) <n | M | 0y +

+ (A kT)YBe 5 {p2v(n' n)((n | R]|n), ?(n n) €+

' #n
+ 2%y (0 m) 6) + (' | M| my, 200 (' m) § +iS) + (32)
+ (e[ dame)y2 T (n n) ((n' | R|n),» (0 n) [, H] —
— 22 [, HIT} ((n | M [ ), HF) (| A | ']

where the first term {.#), has the same expression as Eq. (27). Thus the tem-
perature-dependent paramagnetic terms are introduced.

Since we are interested in obtaining the averaged components of moment .#
in the directions of the flelds €, $, and Hf, we have to average Eq. (32) over all
classical orientations of the molecule with respect to the field directions, assuming
all orientations to have an equal probability. This procedure is equivalent to
taking a summation over all rotational quantum numbers in state functions,
as N1ESSEN has shown before [9]. Let ¥, 8B, and € be vectors rigidly fixed to the
freely rotating molecule, such as the electric and magnetic moment vectors. Then
the average values of the vector quantities appeared in Eq. (32) take the form

AD, ) =519 (33)
% (B, H (€, €)= s ABC [, €]
where U B € denotes the scalar triple product.
The average electric and magnetic moments of the molecule in state n can be

obtained from Egs. (32) and (27) by substituting R and I for #, respectively,
and by taking the average through the formulae given in Eq. (33). One may put

{n|R|n)y and (n|M|n) equal to zero for diamagnetic molecules, when the
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orientating effect of the external field is neglected. Since an actual magnetic
moment operator has the form

(e]2¢) 3 1y, 1] = M — (€2 2 mc?) 3, [v5, W] (34)

i i
the second term produces a perturbation and yields a time- and temperature-
independent diamagnetic contribution. This procedure was shown by GROENE-

wEGE [3]. For the induced average electric moment per molecule, one finally
obtains

Fonr=A, 6+ 4,9+ 4,9 + 4, [6, 971 + 4, [C, 7] + (35)
+ Ay 19, H71 -+ 4, 19, §]

where

A= @3NS B S v m)T @ n)| R P (36)
A= — U S B Sm 3 T n) (| R |0, o | ] m)) (37)
4y = @BR) 3 B e év 0 ) 0 ) (| R[5, < | ) (33)

Ay=1j6mh?) 3 By Sm 3 > @' w){zm n)—t®@ n)}n|R|nd
n n' EFnn’#En
x (' | Ma">n" [ R0y — 2920 (" n)»2 (0" n)T (0 n)<n | R|n"> x
x (" [ R 0" " | M n) —v 2y n) T (0 n) {<n | Rnd | Rn"> /| M n) +
+ | M) | R]n> [ R|ny— (] ET)v 292 (0 n) 7 (0 n) X (39)
XM ny n | R n'> o’ | R n)]
Ay=— AW 3 B, He 3 > [{v@ n)v(n n)—»2}v (0 n)v(n" n)x

n! Zn W #n
X (| R|n> ' | M| n" " | R0y —
—r @ n)y " w) T (0 ) ln [ R|nD> @Ry D" | M0y —
—rm a){Kn | R i)y |R|n>n | M| 2>+ (40)
= | M0y ln | R |0 | R n)p) —
— (BET)y (0" n) 7 (0 0) (n | M 0) < [ R <n' | R 0)]
= (1/6 nh?) ZB" Im S > [ n){y@ w)y@ n) + 12T n) T (0 0) X

u EFnn#En
x(n]%ﬁ]n}(n]EUE[n”><n”]§UHn>+ (41)
+r i@ n) T n) n [ RiaD D[R] n"> " [ M| n)y —
— (RfET) v (0" m) <n [ M| m) {n | R o> ' | M| w)]

A, = — (1/3 h?) Z B Ze > 5 [pl(n’ayvim w)2{t(n n) -1 (0 n)}x
n Enn#En
x <{n | R | n}(n{i)ﬁ\n”)(n”l?ﬁln}— (42)

— (RfETYy (0" w)T (0" n) (n | M nd<n [ R ay /|| w)].

Here it should be noted that since one has fo use complex wave functions (see
Introduction), (<n |R|n'>, (n" |R|n)) = |<n|R|n'>|? is real but the other
vector quantities including the scalar triple products can be complex. We have
replaced the Ze symbol to #m symbol in Egs. (37), (39), and (41), according to,
for example,
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Re Y i({n|R|nD, ' | M| n)) = —J’mz Kn | R |2, <0 | T np) .
n’ AU n' #n
The first coefficient 4, of Eq. (35) which form is shown in Eq. (36) corresponds
to the polarizability of the molecule.
In the same way, one can obtain the expression for the induced average
magnetic moment per molecule:

(Mynz = B, $ + By G+ B, G + B, [9, 91+ B; [§, 971+

+ By [G, §11 + B, [6, $71 + (1p + 10) & (43)
where
B, = (2/3 h) % B nén v(n' n) T (0 n) | {n [ m ] "> ]2 (44)
By= — (137h) 3 B Sm ,va‘zvz (' n) 7 (0 0) ((n | M| 0D, (n' | R | n)) (45)
By=(231) 3 7 ; (Z' n) 7 (0’ n) ((n | M [0, 0’ R | n)) (46)

B,=(1j6ah) S B Sm S S [t (n" m) {292 —
n n' #nn#En
—v (@ n)y(n" 0w} (n )T (0 0y n | M a"> | M| n"><n" [ M0y —
— (RET) 7 (0" n) L | M| m) (o | M| 0> (o’ | I | 0] (47)
B, = — 1/3h2)2 B Ze > Y [y wyv(n n)+42 T (0 n)T(n" n) x

n! #n v #En
x(n[iDE[n}(n|§H€|n”><n”[§m]n> (B/ET) v (' n) T (v m) X
><<n]§mln><n[9ﬁ]n’><n’]E)JE]n)] (48)
1/6:7'5722)ZB° Im S 3 i@ ) {r@ n)—1 @ n)}n|M|a) x

' EnnEn
X {n' | M| n”) " [ R0y —v 2yt (" n)v? (0" w) T (0 0) {<n | M| 5" x
X ' | R ey " | M n)+ <o | R|n><n” | M a") n” | M| n)} —
— 2y (n n) T (' n){(n]iﬁ]n}(n‘%ﬁln><n | M| 2>+ (49)
FOI | o ) o )~
— (RET)v=29% (0" n) T (' ) {n [ M| n) n [ M| 0> ' | R n)]
B, = — (1/3 »?%) EB" Re 5 > [pr+v (0 n)y@m" n)}t(n' n)T (0" n) x
n! ERnl#En

x(n]i))?[n)(n [%ln”}(n”{%In)—v—l(n”n)v(n n) 7 (v B) X

X (n | M| a’>n [ Ra"y " | M| nd.— RET)v (v’ n) 7 (0 n) x (50)
Xn | M| ny ln | M| 2" n’ | R nd]
2o = (2/8 F) % B n%nv (n' n)|<n|M|n") (51)
— (@6 me?) S B (n |12 | m) . (52)
n 7

Here B, is the magnetic susceptibility, and y, and yq are the time- and tempera-
ture-dependent paramagnetic and diamagnetic susceptibilities, respectively.

4. Magneto-Optical Rotation
To complete the discussion of the relation between radiation of the plane of
polarization and the field strengths, we consider an isotropic medium containing
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N molecules per unit volume. When all molecules in the medium are assumed to
be of the same kind and in the same state, the summation over » in the foregoing
equations needs not be taken, the value of B? being put to be equal to unity in
the case of diamagnetic molecules. For gases and vapours, we may assume that
the effictive field acting on the molecule is set to be equal to the external field.
The electric induction 2 and magnetic induction & in the medium may therefore
be written as

D=C+4nN Fonr, (53)
B=$+4aN Dons .

Substituting Eqgs. (35) and (43) into Eq. (53), and discarding time-independent
terms, one obtains

D =01 €+ a3 9 + 0, [€, D] + o0y [D, H] (54)
,@:ﬁlg_{_'62@_;_53[@,5:)@_;_54[@,@.{]
where
x,=144aN 4, f;=1+4nN B,
ao=4aN 2aivd, + 4;), Bo=4aN 2niv B, + By)
xg=4aN 2niv 4, + 4;), f=4aN 2miv B, + By) (65)

oy =4nN 2mivAg+ A4,), B=4nN(2naiy By+ B,).

Here it is noted that «, is the dielectric constant and g, is the permeability of
the medium.
Substitution of Eq. (54) into Maxwell’s equations

n[f,C =% alfd=—-9 (56)
which are derived from his curl equations for the specified plane waves, and elimi-
nation of § after neglecting higher powers of small quantities «; and B; (4 = 2, 3. 4)
yield
— w2 [5 [% €1 — o0y By € + {n (85 — a9) + n* (B3)B4) (£, §7) } [t, €] — (57)

— %3 f1 1€, §71 — n (g — By) [E [C, H7]] =
The vector equation of this kind can be written as a system of homogeneous linear
equations in By, By, and E, which has non-trivial solutions only for specific values
of the refractive index n. When directions of propagations of the radiation f and

of the external magnetic field $7 are both taken to be z-axis, the determinantal
equation from which the eigenvalues of # have to be determined is

"”2_0‘1‘31“‘7@ (g — Ba) HY —n (B~ op) — r%310‘:54‘%2 ﬁs/ﬂl}Hfl,_O
| 7 (g — o) + {Byos + 02 (BofB)} HF 0% — oy By — m (o0 — B,) HY

(58)
where [ denotes the magnitude of the external magnetic field along the z-axis.
In order to obtain approximate eigenvalues of #, let us again retain only first
powers of the small quantities n; and f; (4 = 2, 3, 4). The result is

mr i = (1 f1) 4+ 3 (g — B) HE T 34 (g — Bs) (59)
+ 30 (o0 By + B ov1) (o0g By) T HY

where n, and n; are the refractive indices for right and left circularly polarized
waves, respectively, n, taking the upper sign and #; the lower.
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Hence the rotation of the plane of polarization per unit path length is given by
@ = (wvfe) (m — ny) = (P 7wv/c) {oy — B — (003 By + Bs 1) (&1 B~ HT}
= (873 No¥fc) {B, — Ay + (A, 1 + By 1) (o¢y 1)~ HI} . (60)
Since 4, and B, are non-vanishing only for optically active molecules, the Verdet
constant for ordinary (optically inactive) molecules can be expressed as
V = (8 % Nv¥/c) (4, + By) (61)
where o, and f; have been set equal to unity in accordance with our approximation
taken about the effective field. In the absence of the external magnetic field,
Eq. (61) leads to the formula for the rotation of the plane of polarization in
optically active molecules:
@' = (8 7% Nv¥fc) (By — Ay) . (62)
Substitution of Bgs. (37) and (45) into Eq. (62), after rewriting Kq. (45) as

Im S v w)T (@ ) (<n | MaD, 0 [R]|n))
n #n

— I [ | (O R) [ ) — (o | R [, (n || ) +
+ 3 T m) (o | |, n' | R )

n! #n
=Jm > v{nn)(n|M]nD, {0 |[R]n))
n'£n
=—Jm 3 v n)(n|R|nD, | M|nd),
n #n
gives
¢ = (1672 N?3he) > By > T (0 n) Im ((n|R |0, {0’ | M| ) (63)
n n#En

which is the well known formula for the natural optical rotation [2].
Rewriting the second and fourth terms of Eq. (39) and the first term of Eq. (47),
and substituting them into Eq. (61), one obtains the final formula for the Verdet

constant.

Ve=(4m2 No¥3h2c)> B Im S [—2v(n n) 7% (0 n){n' | M| 0> x
x (| R n'y ' [ R0y —v=2v (0 w)7 (0 0) {<n | R|n) (n | R|n') < | | n) +
+ My ln | RnD @ | R wd} 4+
+ St et )~ t@m n)} | R & | M| a"> " | Rn) —

n?En!
—2 S i@ n)r (@ n)n | R )& | R R | M| w) + (64)
+ 2 r(v—l (n" w'){v (n' n) — v (0" n)} —

W ER

— 2yt (@ n)v( 0) {n | M0y’ [ M n"> n" | M| n)] —
— 42 N8 hckT) > B Im > 3 T (n m)x

n nERRER
X {n | Miny | R|2>@ | R|ny+ o | M0y n| M| 2w | M|}
The first term here is the diamagnetic term and is the contribution of the Zeeman
effect. As will be seen in a forthcoming paper, this term reduces to the so-called
,,hormal’”® Verdet constant
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Vi=4ne N3 hme?) 3 BY 5 win n)72(n' n) | {n|R|a> 2 (65)
% n' #n
for linear molecules. The last terms of Eq. (64) are the temperature-dependent
paramagnetic terms and are due to the altered distribution of molecules in the
ground state caused by the external magnetic field. All other paramagnetic terms
arise from the perturbation of the amplitude elements of the electric moment and
the magnetic moment by the external magnetic field, and have the same frequency
dependence as the temperature-dependent paramagnetic terms. In particular,
terms which are proportional to the difference quotient v (n" %) {7 (n'n) —7(n"n)}
can be expanded in powers of v (n” ') 7 (n’ n) when this quantity is small; i.e.

v (" ') {r (n' n) — 7 (n" n)}
=2v@ )W a){l—2v@ n)y®" n)rn n)+....}. (66)

When terms after the first are neglected, these paramagnetic terms (the third and
the fifth terms in Eq. (64)) can be combined together with the first term of Eq. (64),
which is diamagnetic. In that case, the Verdet constant can be written in the form

V=3 wn)dmn)+zm n) B n)+T1v@m n)Cnn}. (67)

Eq. (67) agrees with the formula given by SERBER [11] except that the scalar
triple products %t I W were absent in his formula, since he did not take into
consideration the contribution of the induced magnetic moment. It also can be
easily shown that the temperature-independent terms in Kq. (64) agree with
Groenewege’s formula.

The formula given in Eq. (64) is very convenient for actual computations of
the Verdet constant of diamagnetic molecules. This will be seen in a forthcoming

paper.

I should like to thank Professor P. O. Lowpix for valuable discussions. This paper is
dedicated to Professor Masao KoTaxT on his sexagenary birthday.
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